Appl Environ Microbiol 2008, 74:6452–6456 PubMedCentralPubMedCros

Appl Environ Microbiol 2008, 74:6452–6456.PubMedCentralPubMedCrossRef 57. Vincze T, Posfai J, Roberts RJ: NEBcutter: A program to cleave DNA with restriction enzymes. Nucleic Acids Res 2003, 31:3688–3691.PubMedCentralPubMedCrossRef 58. Martorell P, Barata A, Malfeito-Ferreira

M, Fernandez-Espinar MT, Loureiro V, Querol A: Molecular typing of the yeast species Dekkera bruxellensis and Pichia guilliermondii recovered from wine related sources. Int J Food Microbiol 2006, 106:79–84.PubMedCrossRef Competing interests The authors declare that they have no competing interests. Authors’ contributions WR and KJ conceived this website and designed the study, carried out the analysis and interpretation of the data and drafted the manuscript. WR carried out the molecular studies, performed the phenotypic identification and executed the in silico and sequence analyses. SK contributed to the molecular studies. GA and KJ critically revised selleck kinase inhibitor the draft manuscript. All authors read and approved the final manuscript.”
“Background Rhodosporidium AZD6738 cell line toruloides is a β-carotenoid accumulating oleaginous yeast in subphylum Pucciniomycotina[1]. Able to accumulate more than 70% of its dry cell mass as triacylgleride with similar chemical composition to those of plants from ultra-high density fermentation [2–4], R. toruloides is regarded as a great host with

vast biotechnological potential to produce single cell oil, which may find wide spread applications in staple food, animal feed, biodiesel, surfactant and raw material for industrial polymers [3, 5]. Although studies have been done to optimize lipid yield through high-density fermentation [2], there are scarce reports on the rational genetic engineering to improve lipid accumulation or fatty acid profiles in R. toruloides. To date, there are no reverse genetic studies reported in R. toruloides. With

the advent of efficient and stable transformation Selleckchem Verteporfin method established using Agrobacterium tumefaciens-mediated transformation (ATMT) in R. toruloides[6], reverse genetic studies should become a real possibility. Targeted gene deletion, often referred as targeted gene knockout, is an essential tool for genetic engineering and reverse genetics. This is an important cornerstone to make any strains commercially competitive [7]. While targeted gene integration in model microorganisms, such as Saccharomyces cerevisiae and Schizosaccharomyces pombe, can be done with ease and high efficiency [8, 9], it is a major obstacle in many industrially important species such as R. toruloides. It has been proposed that DNA repair of double-stranded breaks by homologous recombination (HR) and non-homologous end-joining (NHEJ) operate competitively [10], and the predominance of NHEJ over HR has been regarded as the main cause of low gene targeting efficiency in fungi [11, 12].

Comments are closed.