Following infection of resistant BALB/c mice with T  muris, we ob

Following infection of resistant BALB/c mice with T. muris, we observed accumulation of eosinophils in intestine-draining mesenteric lymph nodes (MLNs). The accumulation of MLN eosinophils was

initiated during the second week of infection and peaked during worm expulsion. In contrast, we detected a comparably late and modest increase in eosinophil numbers in the MLNs of infected susceptible AKR mice. MLN eosinophils localized preferentially to the medullary region of the lymph node, displayed an activated phenotype and contributed to the interleukin-4 (IL-4) response in the MLN. Despite this, mice genetically deficient in eosinophils efficiently generated IL-4-expressing CD4+ T cells, produced Th2 cytokines and mediated worm expulsion during primary T. muris infection. Thus, IL-4-expressing eosinophils accumulate in MLNs of T. muris-infected BALB/c mice but are dispensable click here for worm expulsion and generation of

Th2 responses, suggesting a distinct or subtle role of MLN eosinophils in the immune response to T. muris infection. “
“Sjögren’s syndrome (SS) is an autoimmune disease characterized by lymphocytic infiltration of the salivary and lacrimal glands. The aim of the study was to characterize and compare the presence of diverse cytokines and regulatory T and B cells in lip minor salivary gland (MSG) biopsies from patients with primary Sjögren’s syndrome (pSS), secondary SS (sSS), and patients Mannose-binding protein-associated serine protease with connective tissue disease (CTD) Raf inhibitor without (w/o) SS. We included samples of MSG from 15 pSS, 24 sSS (six scleroderma, nine rheumatoid arthritis and nine lupus patients) and 15 patients with CTD w/o SS. Tissues were examined by an indirect immunoperoxidase technique (goat polyclonal anti-human IL-19, goat polyclonal anti-human IL-22 or mouse monoclonal anti-human IL-24). To determine the subpopulation of CD4+/IL-17A+-, CD4+/IL-4+-, CD4+/IFN-ɣ+-expressing T cells, CD25+/Foxp3+ Treg cells and CD20+/IL-10+-producing B cell subset, a double-staining procedure was performed. We estimated the mean percentage of positively

staining cells in two fields per sample. CD4+/IFN-ɣ+, CD4+/IL-4+ and IL-22+ cell percentages were elevated in both SS varieties; however, the cells were more prevalent in pSS. Patients with pSS had a high number of CD4+/IL-17A+ and IL-19+ T cells and a lower percentage of IL-24+ cells (P < 0.05). The Treg and IL-10-producing B cells were increased in pSS (P < 0.05). Concluding, in our patients, a pro-inflammatory and regulatory balance coexists in SS, being both responses more intense in pSS. The explanation of these differences may be related to disease activity, disease duration and treatment. "
“Relatively little is known about regulatory T (Treg) cells and their functional responses in dogs.

Comments are closed.