Science 2007, 315:490–493.CrossRef 14. Fasolino A, Los J, Katsnelson M: Intrinsic TPX-0005 concentration ripples in graphene. Nat Mater 2007, 6:858–861.CrossRef 15. Carlsson J: Graphene: buckle or break. Nat Mater 2007, 6:801–802.CrossRef 16. Zhou J, Huang R: Internal lattice relaxation of single-layer graphene under in-plane deformation. J Mech Phys Solids 2008, 56:1609–1623.CrossRef 17. Frank I, Tanenbaum D, van der Zande A, McEuen P: Mechanical properties
of suspended graphene sheets. J Vac Sci Technol B 2007, 25:2558–2561.CrossRef 18. Poot M, van der Zan H: Nanomechanical properties of few-layer graphene membranes. Appl Phys Lett 2008, 92:063111.CrossRef 19. Duan W, Wang C: Nonlinear bending and stretching of a circular graphene sheet under a central point load. Nanotechnology LBH589 clinical trial 2009, 20:077702. 20. Landau L, Lifshits E: Theory of Elasticity. New York: Pergamon; 1970. 21. Yang X, He P, Wu A, Zheng B: Molecular dynamics simulation of PI3K inhibitor nanoindentation for graphene. Scientia Sinica: Phys, Mech, Astron 2010, 40:353–360. 22. Lee C, Wei X, Kysar J, Hone J: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321:385–388.CrossRef 23. Lee G,
Cooper R, An S, Lee S, Zande A, Petrone N, Hammerberg A, Lee C, Crawford B, Oliver W, Kysar J, Hone J: High-strength chemical-vapor–deposited graphene and grain boundaries. Science 2013, 340:1073–1076.CrossRef 24. Fang T, Wang T, Yang J, Hsiao Y: Mechanical characterization of nanoindented graphene via molecular
dynamics simulations. Nanoscale Res Lett 2011, 6:481.CrossRef 25. Kiselev S, Zhirov E: Molecular dynamic simulation of deformation and fracture of graphene under uniaxial tension. Phys Mesomech 2013, 16:125–132.CrossRef 26. Topsakal M, Ciraci S: Elastic and plastic deformation of graphene, silicene, and boron nitride honeycomb nanoribbons under uniaxial tension: a first-principles density-functional theory study. Phys PAK5 Rev B 2010, 81:024107.CrossRef 27. Xu Z: Graphene nano-ribbons under tension. J Comput Theor Nanos 2009, 6:1–3.CrossRef 28. Zhao H, Min K, Aluru N: Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett 2009, 9:3012.CrossRef 29. Carpio A, Bonilla L: Periodized discrete elasticity models for defects in graphene. Phys Rev B 2008, 78:085406.CrossRef 30. Lee G, Yoon E, Hwang N, Wang C, Ho K: Formation and development of dislocation in graphene. Appl Phys Lett 2013, 102:021603.CrossRef 31. Dumitrica T, Hua M, Yakobson B: Symmetry-, time-, and temperature-dependent strength of carbon nanotubes. Proc Natl Acad Sci U S A 2006, 103:6105–6109.CrossRef 32. Warner J, Margine E, Mukai M, Robertson A, Giustino F, Kirkland A: Dislocation-driven deformations in graphene. Science 2012, 337:209.CrossRef 33. Wang W, Yi C, Ji X, Niu X: Molecular dynamics study on relaxation characteristics of graphene nanoribbons at room temperature. Nanosci Nanotechnol Lett 2012, 4:1188–1193.CrossRef 34.