Vertical black lines indicate cos and attP sites respectively. Red arrows indicate tRNA genes. Pseudogenes are marked with GSK872 a black asterisk. Below the scale, arrows represent homologous proteins of bacteriophages and prophages from
different hosts with S. flexneri, E. coli and Salmonella framed within a green, red or blue box, respectively. Homologs between SfI and other phages/prophages are shown in different colors with color coding corresponding to level of homology at amino acid level, with red of 100% identity and blue of > =50% identity. Phage SfI has a very narrow host range Host specificity of serotype-converting bacteriophages has long been recognized, which results in the specific lytic spectrum and serotype conversion of S. flexneri in nature [20]. The recognition between the O-antigen of host bacterium and the tail component of a phage is the key Torin 1 mouse mechanism of host specificity [20]. To determine the host range of SfI, 132 S. flexneri CYC202 strains of 12 serotypes (1a, 1b, 2a, 2b, 3a, 3b, 4a,
4b, 5a, Y, X and Xv) were tested following the methods described in the Methods. Apart from 10 serotype Y strains, which were all converted to serotype 1a as expected, the 24 serotype X strains tested were also lysogenized, and converted to a newly named serotype 1d [16]. The serotype 1d strains were serologically characterized as reacting with both serotype 1 specific I typing sera and serotype X specific 7;8 grouping sera [16]. Interestingly, such a serotype has already appeared in natural infections in Anhui and Henan provinces, China [21]. Except for serotypes Y and X, the other serotypes could not be lysogenized by phage SfI. A possible explanation for the host range restriction of phage SfI is phage immunity due to modification of the O-antigen as phage receptors [22]. SfI uses a site-specific mechanism for DNA packaging and has the same attP core sequence as SfII, SfIV, SfV and SfX Restriction enzyme analysis revealed that phage SfI has a linear but not circular Paclitaxel ic50 genome (data not shown). Genomic comparison found that the
SfI prophage genome has similar packaging genes to that of phage SfV; and the fragments adjacent to them were also highly similar to the cohesive end site (cos) of phage SfV [9], with only one base difference at the 5′ end (T versus A). These data suggest that SfI may use the same site-specific mechanism as SfV for packaging. Direct sequencing of the putative termini of the SfI genome extracted from free phage particles and comparison of the corresponding regions with the SfI prophage genome in strain 019 revealed a 10 nucleotide (5′- TGCCCGCCCC -3′) gap in the SfI phage genome. Therefore, we conclude that SfI uses a cos mechanism for DNA packaging as postulated for phage SfV [9], and does not use a head full mechanism (pac) as for phage Sf6 and SfX [10, 12].