However, the degeneracy of the e g state is lifted for Pd-2 becau

However, the degeneracy of the e g state is lifted for Pd-2 because of the missing apical oxygen atom, leading to a downward shift in d 3z 2 -r 2 beneath the Fermi level, except for a small antibonding state near the Fermi level associated with hybridization between the Pd d 3z 2 -r 2 and p state of oxygen atom beneath it.

The t 2g states are also fully occupied in the form of a stable closed shell. The degeneracy of the e g state is lifted due to the lowering of symmetry at Momelotinib clinical trial the surface for Pd-2 located at the first FeO2 layer (Figure  2 group II (c)). However, as there is another O at the subsurface, a much stronger antibonding Pd d 3z 2 -r 2 state appears near the Fermi level in contrast to that in panel (b2). Additionally, the d xy state remarkably increases in energy due to increased hybridization between the Pd-d xy and O-p y/x states, and an especially sharp peak emerges at the Fermi level in the spin-up state. The Pd d xy state also appears near the Fermi level for Pd-1 as shown in panel (c1). The corresponding partial charge density for the peak at the Fermi level has been drawn on the (001) plane in panel (d). The spin-up partial charge density exhibits strong antibonding states in the form of pdπ* bonds between Pd and O in the energy window from -0.1 to +0.1 eV relative to the Fermi energy. As a result, the additional Pd at the neighboring surface site is

less stable than that at the ML323 manufacturer second FeO2 layer. Figure 2 Simplified 2D tables that represent complicated structures of perovskite surfaces containing Pd n ( n =1 and 2). Groups I to III are for the geometries

with no VO, one VO, and two VOs, respectively. The atomic configurations for each group, which are schematically represented by the table of panel (a), are indicated by the ball and stick model. The uncapping unit cell is indicated by the black line as seen in Figure 1. The rows containing Fe (Pd) in each table represent FeO2 (PdO2) layers, and the vertical lines represent O atoms in FeO2 (PdO2) layers. The horizontal lines represent O atoms in LaO layers (La atoms are not explicitly shown). The absence of vertical (horizontal) Erastin supplier lines means VO forming at the surface (subsurface) site. The calculated difference in energy (in eV) for each panel relative to the total energy of the surface in panel (a) is also listed. Figure 3 Calculated projected density of states (PDOS) of two Pd atoms. Panels (a1) to (c1) are the PDOSs for Pd-1 located at the top-left site of Figure 2 group II (a) to (c). Panels (a2) to (c2) represent the PDOSs of Pd-2, which is located at the third FeO2 layer (a2), at the subsurface (b2), or the first FeO2 layer (c2). Positive (negative) values refer to spin-up (spin-down) states. The line through the zero point on the horizontal axis represents the Fermi level.

Comments are closed.