The nanoscale metastable (Fe,Co)(23)B(6) phase precipitated in the glassy matrix after annealing, while the two-stage-like glass transition disappeared, indicating the two-stage-like glass transition results from the overlap of the endothermic reaction for the glass transition with the exothermic reaction for the formation of the (Fe,Co)(23)B(6) phase in the supercooled liquid region. The (Fe(0.9)Co(0.1))(67.5)Nb(4)Gd(3.5)B(25) glassy
alloy exhibits high glass-forming ability, enabling the formation of glassy alloy rods with diameters exceeding 3.0 mm, rather high saturation magnetization of 0.91 T, low coercive force of 2.5 A/m, and high fracture strength of 3870 MPa.”
“BACKGROUND: Hydroponic greenhouse effluent has high concentrations of total phosphorus (30100 mg PO4-P L1) and nitrates (200300 buy FK228 mg NO3-N L1). Current technologies for effluent treatment have limitations of performance
and high maintenance costs. The goals of this study buy ISRIB were to investigate strategies which combine alkali treatment and microalgae cultivation for removal of nutrients from hydroponic greenhouse effluent. RESULTS: Treatment with strong alkali was found to effectively remove 97% of total phophorous especially in the form of phosphate, without affecting the nitrate ion concentration in the greenhouse effluent. After alkali treatment, marine algae Dunaliella salina (UTEX 1644) cultivation on treated hydroponic effluent (pH 7.5) showed > 80% decrease in nitrate content in the effluent within 4 days of cultivation. In the same period, the
carotene content of the micro-algal system was in the range 0.5 +/- 0.02 mu g mg1 (dry cell weight) which was 1.5 times higher than in the control. CONCLUSION: This study demonstrated that combination of a conventional alkali precipitation method with a microalgae treatment system is a highly efficient approach for the removal of excess nutrients from hydroponic greenhouse effluent in a short treatment time. The microalgae can provide a source of value in the form of carotene. (c) 2012 Society of Chemical GSK J4 datasheet Industry”
“Conducting clinical pharmacology research studies in pediatric patients is challenging because of ethical and practical constraints but necessary to ensure that drugs are used safely and effectively in this population. Developments in laboratory analytical techniques, such as improved assay sensitivity and the use of alternative sample matrices, can reduce blood loss and offer less invasive blood sampling, causing less trauma to the patient and fewer ethical concerns. Recent advances in data analysis techniques, which aim to extract the maximum amount of useful information from small sample numbers, should be considered when planning a clinical trial and incorporated into the study design.